(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
f(mark(X1), X2) → mark(f(X1, X2))
top(ok(X)) → top(active(X))
proper(b) → ok(b)
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(mark(X1), X2) → mark(g(X1, X2))
active(a) → mark(b)
top(mark(X)) → top(proper(X))
h(mark(X)) → mark(h(X))
proper(a) → ok(a)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
Rewrite Strategy: INNERMOST
(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6]
transitions:
mark0(0) → 0
ok0(0) → 0
b0() → 0
a0() → 0
f0(0, 0) → 1
top0(0) → 2
proper0(0) → 3
g0(0, 0) → 4
active0(0) → 5
h0(0) → 6
f1(0, 0) → 7
mark1(7) → 1
active1(0) → 8
top1(8) → 2
b1() → 9
ok1(9) → 3
f1(0, 0) → 10
ok1(10) → 1
g1(0, 0) → 11
mark1(11) → 4
b1() → 12
mark1(12) → 5
proper1(0) → 13
top1(13) → 2
h1(0) → 14
mark1(14) → 6
a1() → 15
ok1(15) → 3
h1(0) → 16
ok1(16) → 6
g1(0, 0) → 17
ok1(17) → 4
mark1(7) → 7
mark1(7) → 10
ok1(9) → 13
ok1(10) → 7
ok1(10) → 10
mark1(11) → 11
mark1(11) → 17
mark1(12) → 8
mark1(14) → 14
mark1(14) → 16
ok1(15) → 13
ok1(16) → 14
ok1(16) → 16
ok1(17) → 11
ok1(17) → 17
active2(9) → 18
top2(18) → 2
active2(15) → 18
proper2(12) → 19
top2(19) → 2
b2() → 20
ok2(20) → 19
b2() → 21
mark2(21) → 18
active3(20) → 22
top3(22) → 2
proper3(21) → 23
top3(23) → 2
b3() → 24
ok3(24) → 23
active4(24) → 25
top4(25) → 2
(4) BOUNDS(1, n^1)
(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(b) → ok(b)
proper(a) → ok(a)
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
active(a) → mark(b)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
TOP(ok(z0)) → c2(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
PROPER(b) → c4
PROPER(a) → c5
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
ACTIVE(a) → c8
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
S tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
TOP(ok(z0)) → c2(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
PROPER(b) → c4
PROPER(a) → c5
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
ACTIVE(a) → c8
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
K tuples:none
Defined Rule Symbols:
f, top, proper, g, active, h
Defined Pair Symbols:
F, TOP, PROPER, G, ACTIVE, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
ACTIVE(a) → c8
PROPER(a) → c5
PROPER(b) → c4
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(b) → ok(b)
proper(a) → ok(a)
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
active(a) → mark(b)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
TOP(ok(z0)) → c2(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
S tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
TOP(ok(z0)) → c2(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
K tuples:none
Defined Rule Symbols:
f, top, proper, g, active, h
Defined Pair Symbols:
F, TOP, G, H
Compound Symbols:
c, c1, c2, c3, c6, c7, c9, c10
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(b) → ok(b)
proper(a) → ok(a)
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
active(a) → mark(b)
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
f, top, proper, g, active, h
Defined Pair Symbols:
F, G, H, TOP
Compound Symbols:
c, c1, c6, c7, c9, c10, c2, c3
(11) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
g(mark(z0), z1) → mark(g(z0, z1))
g(ok(z0), ok(z1)) → ok(g(z0, z1))
h(mark(z0)) → mark(h(z0))
h(ok(z0)) → ok(h(z0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(a) → mark(b)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, G, H, TOP
Compound Symbols:
c, c1, c6, c7, c9, c10, c2, c3
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x2
POL(G(x1, x2)) = [2]x2
POL(H(x1)) = 0
POL(TOP(x1)) = 0
POL(a) = [2]
POL(active(x1)) = [2] + [3]x1
POL(b) = [2]
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [3]
POL(ok(x1)) = [3] + x1
POL(proper(x1)) = [2] + [3]x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(a) → mark(b)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
F(mark(z0), z1) → c(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, G, H, TOP
Compound Symbols:
c, c1, c6, c7, c9, c10, c2, c3
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(mark(z0), z1) → c(F(z0, z1))
H(mark(z0)) → c9(H(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
We considered the (Usable) Rules:
proper(b) → ok(b)
active(a) → mark(b)
proper(a) → ok(a)
And the Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = x1
POL(G(x1, x2)) = 0
POL(H(x1)) = x1
POL(TOP(x1)) = x1
POL(a) = [1]
POL(active(x1)) = x1
POL(b) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(a) → mark(b)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
G(mark(z0), z1) → c6(G(z0, z1))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
K tuples:
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
F(mark(z0), z1) → c(F(z0, z1))
H(mark(z0)) → c9(H(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, G, H, TOP
Compound Symbols:
c, c1, c6, c7, c9, c10, c2, c3
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(mark(z0), z1) → c6(G(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = 0
POL(G(x1, x2)) = x1 + x2
POL(H(x1)) = 0
POL(TOP(x1)) = 0
POL(a) = 0
POL(active(x1)) = 0
POL(b) = [1]
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = [1]
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(a) → mark(b)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
K tuples:
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
F(mark(z0), z1) → c(F(z0, z1))
H(mark(z0)) → c9(H(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
G(mark(z0), z1) → c6(G(z0, z1))
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, G, H, TOP
Compound Symbols:
c, c1, c6, c7, c9, c10, c2, c3
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(ok(z0)) → c10(H(z0))
We considered the (Usable) Rules:none
And the Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = 0
POL(G(x1, x2)) = 0
POL(H(x1)) = x1
POL(TOP(x1)) = 0
POL(a) = [1]
POL(active(x1)) = x1
POL(b) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(a) → mark(b)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
TOP(ok(z0)) → c2(TOP(active(z0)))
K tuples:
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
F(mark(z0), z1) → c(F(z0, z1))
H(mark(z0)) → c9(H(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
G(mark(z0), z1) → c6(G(z0, z1))
H(ok(z0)) → c10(H(z0))
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, G, H, TOP
Compound Symbols:
c, c1, c6, c7, c9, c10, c2, c3
(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(ok(z0)) → c2(TOP(active(z0)))
We considered the (Usable) Rules:
proper(b) → ok(b)
active(a) → mark(b)
proper(a) → ok(a)
And the Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = 0
POL(G(x1, x2)) = [2]x1
POL(H(x1)) = 0
POL(TOP(x1)) = x1
POL(a) = [1]
POL(active(x1)) = x1
POL(b) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = [1] + x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(a) → mark(b)
proper(b) → ok(b)
proper(a) → ok(a)
Tuples:
F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(mark(z0), z1) → c6(G(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
H(mark(z0)) → c9(H(z0))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:none
K tuples:
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0), ok(z1)) → c7(G(z0, z1))
F(mark(z0), z1) → c(F(z0, z1))
H(mark(z0)) → c9(H(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
G(mark(z0), z1) → c6(G(z0, z1))
H(ok(z0)) → c10(H(z0))
TOP(ok(z0)) → c2(TOP(active(z0)))
Defined Rule Symbols:
active, proper
Defined Pair Symbols:
F, G, H, TOP
Compound Symbols:
c, c1, c6, c7, c9, c10, c2, c3
(23) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(24) BOUNDS(1, 1)